
Digital Object Identifier (DOI) 10.1007/s100520100772
Eur. Phys. J. C 21, 717–721 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Electrodynamics on matrix space: non-Abelian by coordinates

A.H. Fatollahia,b,c

Dipartimento di Fisica, Universita di Roma “Tor Vergata”, INFN-Sezione di Roma II, Via della Ricerca Scientifica, 1,
00133, Roma, Italy

Received: 28 June 2001 /
Published online: 19 September 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. We consider the dynamics of a charged particle in a space whose coordinates are N×N hermitian
matrices. Putting things in the framework of D0-branes of string theory, we mention that the transforma-
tions of the matrix coordinates induce non-Abelian transformations on the gauge potentials. The Lorentz
equations of motion for matrix coordinates are derived, and it is observed that the field strengths transform
like their non-Abelian counterparts. The issue of the map between theory on matrix space and ordinary
non-Abelian gauge theory is discussed. The phenomenological aspect of “finite-N non-commutativity” for
the bound states of D0-branes appears to be very attractive.

1 Electrodynamics on matrix space

We begin with the dynamics of a charged point particle in
a space whose coordinates are N ×N hermitian matrices,
such as

Xi = Xi
aT

a, i = 1, · · · , d, a = 1, · · · , N2 (1)

in which the T a are the basis for the hermitian matrices
(i.e., the generators of U(N)). The action may be in the
form of

S[X] =
∫

dtTr(
1
2
mẊiẊ

i + qẊiAi(X, t)

−qAt(X, t) − V (X)), (2)

which can be obtained simply by replacing the ordinary
coordinates, x, by their matrix form X, in the action
S[x] =

∫
dt( 1

2mẋiẋ
i −qẋiAi(x, t)−qAt(x, t)−V (x)), sim-

ply adding a “Tr” on the matrix structure. Besides we as-
sume that the gauge potentials (At(X, t), Ai(X, t)) have a
functional dependence on the matrix coordinates X, and
to put things simple (and natural) the Tr should be cal-
culated by a “symmetrization prescription” on the matri-
ces X. By a symmetrization prescription we mean sym-
metrization on all of the X’s appearing in the potentials;
this can be obtained by the so-called “non-Abelian Taylor
expansion,”

Aµ(X, t) = Aµ(x, t)|x→X ≡ exp[Xi∂xi ]Aµ(x, t) (3)
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=
∞∑

n=0

1
n!

Xi1 · · ·Xin(∂xi1 · · · ∂xin )Aµ(x, t)|x=0,

with µ = t, i. In the above expansion the symmetrization
is recovered via the symmetric property of the derivatives
inside the term (∂xi1 · · · ∂xin ). Now we have an action with
enhanced degrees of freedom, from d in ordinary space, to
d × N2 in the space with matrix coordinates.

The fate of the U(1) symmetry of the action S[x], with
transformations

Aµ(x, t) → A′
µ(x, t) = Aµ(x, t) − ∂µΛ(x, t), (4)

in the new action S[X] is interesting. One can see that the
action S[X] is also symmetric under similar transforma-
tions,

At(X, t) → A′
t(X, t) = At(X, t) − ∂tΛ(X, t)

Ai(X, t) → A′
i(X, t) = Ai(X, t) + δiΛ(X, t), (5)

in which δi is the functional derivative δ/δXi. Conse-
quently one obtains

δS[X] ∼ q

∫
dtTr(∂tΛ(X, t) + ẊiδiΛ(X, t))

∼ q

∫
dtTr

(
dΛ(X, t)

dt

)
∼ 0. (6)

2 D0-brane picture

Since we are performing the symmetrization in the gauge
potentials (At, Ai), the symmetric parts of the potential
V (X) can be absorbed in a redefinition of At(X, t). So
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the interesting parts of V (X) contain “commutators” of
coordinates, in an expansion they could be presented by

V (X) = [Xi, Xj ] + Xi[Xj , Xk]︸ ︷︷ ︸
traceless or unsummed index

−m
[Xi, Xj ]2

l4

+O(X6) · · · , (7)

in which l is a parameter with dimension of length. Conse-
quently, the action (2) will be found to be the (low-energy
bosonic) action of N D0-branes in a 1-form RR field back-
ground (At, Ai), in the “temporal gauge” a0(t) = 0. From
the string theory point of view, D0-branes are point parti-
cles to which ends of strings are attached [1,2]. In a bound
state of N D0-branes, D0-branes are connected to each
other by strings stretched between them, and it can be
shown that the correct dynamical variables describing the
positions of D0-branes, rather than numbers, are N × N
hermitian matrices [3]. By restoring the (world-line) gauge
potential a0(t), we end up with the action [4,5]

SD0 =
∫

dtTr
(

1
2
mDtXiDtX

i − qDtX
iAi(X, t)

−qAt(X, t) + m
[Xi, Xj ]2

l4
+ · · ·

)
, (8)

with Dt = ∂t + i[a0(t), ] as covariant derivative. Ignoring
for the moment the gauge potentials (At, Ai), the equa-
tions of motion can be solved by diagonal configurations,
such as

Xi(t) = diag.(xi
1(t), · · · , xi

N (t)),
a0(t) = diag.(a01(t), · · · , a0N (t)), (9)

with xi
α(t) = xi

α0 + vi
αt, α = 1, · · · , N . By this configu-

ration, we restrict the U(N) generators T a to the N di-
mensional Cartan (diagonal) sub-algebra; the symmetry is
broken from U(N) to U(1)N . This configuration describes
the classical free motion of N D0-branes, neglecting the
effects of the strings stretched between them. Of course
the situation is different when we consider quantum ef-
fects, and consequently it will be found that the dynamics
of the off-diagonal elements capture the oscillations of the
stretched strings.

It can be seen that the transformations (5) also leave
the action (8) invariant. By replacements one finds [6]

δSD0 ∼ δS[X] + q

∫
dtTr(ia0[Xi, δiΛ(X, t)]) = 0. (10)

δS[X] is the expression introduced in (6), and the second
term vanishes by the symmetrization prescription [6].

3 Non-Abelian transformations

Actually, the action (8) is invariant under the transforma-
tions

Xi → X̃i = U†(X, t)XiU(X, t),

a0(t) → ã0(X, t) = U†(X, t)a0(t)U(X, t)

−iU†(X, t)∂tU(X, t), (11)

with U(X, t) an arbitrary N × N unitary matrix; in fact
under these transformations one obtains

DtX
i → D̃tX̃

i = U†(X, t)DtX
iU(X, t), (12)

DtDtX
i → D̃tD̃tX̃

i = U†(X, t)DtDtX
iU(X, t). (13)

Now, in the same spirit as for the previously introduced
U(1) symmetry of (5), one finds the symmetry transfor-
mations

Xi → X̃i = U†(X, t)XiU(X, t),

a0(t) → ã0(X, t) = U†(X, t)a0(t)U(X, t)

−iU†(X, t)∂tU(X, t),

Ai(X, t) → Ãi(X, t) = U†(X, t)Ai(X, t)U(X, t)

+iU†(X, t)δiU(X, t),

At(X, t) → Ãt(X, t) = U†(X, t)At(X, t)U(X, t)

−iU†(X, t)∂tU(X, t), (14)

in which we assume that U(X, t) = exp(−iΛ) is arbitrary
up to the condition that Λ(X, t) is totally symmetrized in
the X’s. The above transformations of the gauge poten-
tials are similar to those of non-Abelian gauge theories,
and we mention that it is just a consequence of the en-
hancement of the degrees of freedom going from numbers
(x) to matrices (X). In other words, we are faced with a
situation in which “the rotation of fields” is generated by
“the rotation of coordinates.”

The above observation on gauge theory associated to
D0-brane matrix coordinates by itself is not a new one,
and we already know another example of this kind in non-
commutative gauge theories. In spaces whose coordinates
satisfy the algebra

[x̂µ, x̂ν ] = iθµν , (15)

with constant θµν , the symmetry transformations of the
U(1) gauge theory are like those of non-Abelian gauge
theory [7–9]; in explicit form

Aµ(x) → A′
µ(x) = U†(x) � Aµ(x) � U(x)

−iU†(x) � ∂µU(x), (16)

in which the �-products are recognized. Also, one could
put things in the reverse direction that we had above
for D0-branes. The coordinates xµ can be transformed
locally by the large symmetry of the space by1 x̃µ ≡
U(x) �xµ �U†(x). Note that the above commutation rela-
tion is satisfied also by the transformed coordinates. Now,
by combining the gauge transformations with a transfor-
mation of coordinates one can bring the transformations
of gauge fields to the form of a U(1) theory, by

xµ → x̃µ = U(x) � xµ � U†(x),

Aµ(x) → Ãµ(x̃) = A′(x̃) = Aµ(x) − ∂µΛ(x), (17)

1 Here, we are using x̂ for operators as coordinates, and x as
numbers multiplied by the �-products
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with U = exp(−iΛ). One also notes that by the above
transformation the so-called “covariant coordinates”
X µ ≡ xµ + (θ−1A(x))µ remain invariant. In addition,
the case we see here for D0-branes may be considered as
another example of the relation between gauge symme-
try transformations and transformations of matrix coor-
dinates [10].

The last notable points concern the behavior of a0(t)
and At(X, t) under the symmetry transformations (14).
From the world-line theory point of view, a0(t) is a dy-
namical variable, but At(X, t) should be treated as part
of the background; however, they behave similarly under
transformations. Also we see by (14) that the time, and
only the time dependence of a0(t), which is the conse-
quence of dimensional reduction, should be understood
up to a gauge transformation. In [6] a possible map be-
tween the dynamics of D0-branes, and the semi-classical
dynamics of charged particles in a Yang–Mills background
was mentioned. It is worth mentioning that via this pos-
sible relation, an explanation for the above notable points
can be recognized [6].

4 Lorentz equations of motion

The equations of motion by the action (8), ignoring for
the moment the potential term V (X), will be found to be

mDtDtXi = q(Ei(X, t) + DtX
jBji(X, t)︸ ︷︷ ︸), (18)

m[Xi, DtX
i] = +q[Ai(X, t), Xi], (19)

with the following definitions:

Ei(X, t) ≡ −δiAt(X, t) − ∂tAi(X, t), (20)
Bji(X, t) ≡ −δjAi(X, t) + δiAj(X, t). (21)

Here the symbol DtX
jBji(X, t)︸ ︷︷ ︸ denotes the average over

all of the positions of DtX
j between the X’s of Bji(X, t).

The above equations for the X’s are like the Lorentz equa-
tions of motion, with the exception that the two sides are
N × N matrices, and the time derivatives ∂t are replaced
by their covariant counterpart Dt

2.
The behavior of (18) and (19) under gauge transfor-

mation (14) can be checked. Since the action is invari-
ant under (14), it is expected that the equations of mo-
tion change covariantly. The left-hand side of (18) changes
to U†DtDtXU by (13), and therefore we should find the
same change for the right-hand side. This is in fact the
case, since

f(X, t) → f̃(X̃, t) = U†(X, t)f(X, t)U(X, t),

δif(X, t) → δ̃if̃(X̃, t) = U†(X, t)δif(X, t)U(X, t),

∂tf(X, t) → ∂tf̃(X̃, t) = U†(X, t)∂tf(X, t)U(X, t). (22)

2 Dt is absent in the definition of Ei, because, the combi-
nation i[a0, Ai] has been absorbed to produce DtX

j for both
parts of Bji

In conclusion, the definitions (20) and (21) lead to

Ei(X, t) → Ẽi(X̃, t) = U†(X, t)Ei(X, t)U(X, t),

Bji(X, t) → B̃ji(X̃, t) = U†(X, t)Bji(X, t)U(X, t), (23)

a result consistent with the fact that Ei and Bji are func-
tionals of the X’s. We thus see that, in spite of the absence
of the usual commutator term i[Aµ, Aν ] of non-Abelian
gauge theories, in our case the field strengths transform
like non-Abelian ones. We recall that these are all conse-
quences of the matrix coordinates of D0-branes. Finally,
by a similar reason, the vanishing of the second term of
(10), both sides of (19) transform identically.

An equation of motion similar to (18) is considered in
[11,12] as part of the similarities between the dynamics of
D0-branes and bound states of quarks and QCD strings
[11–13]. The point is that the center-of-mass dynamics of
D0-branes is not affected by the non-Abelian sector of
the background, i.e., the center-of-mass is “white” with
respect to the SU(N) sector of U(N). The center-of-mass
coordinates and momenta are defined by

Xi
c.m. ≡ 1

N
TrXi, P i

c.m. ≡ TrP i
X , (24)

where we are using the convention Tr1N = N . To spec-
ify the net charge of a bound state, its dynamics should
be studied in zero magnetic and uniform electric fields3,
i.e., Bji = 0 and Ei(X, t) = E0i; thus these fields do
not involve X matrices and contain just the U(1) part. In
other words, under gauge transformations E0i and Bji = 0
transform to Ẽi(X, t) = V †(X, t)E0iV (X, t) = E0i and
B̃ji = 0. Thus the action (8) yields the following equation
of motion:

(Nm0)Ẍi
c.m. = NqEi

0(1), (25)

in which the subscript (1) emphasizes the U(1) electric
field. So the center-of-mass only interacts with the U(1)
part of U(N). From the string theory point of view, this
observation is based on the simple fact that the SU(N)
structure of D0-branes arises just from the internal degrees
of freedom inside the bound state.

5 Map to non-Abelian theory

In [7] a map between field configurations of non-commu-
tative and ordinary gauge theories is introduced, which
preserves the gauge equivalence relation. It is emphasized
that the map is not an isomorphism between the gauge
groups. It will be interesting to study the properties of the
map between non-Abelian gauge theory and gauge theory
associated with matrix coordinates of D0-branes; on the
one side the quantum theory of matrix fields, and on the
other side the quantum mechanics of matrix coordinates.

3 In a non-Abelian gauge theory an uniform electric field can
be defined up to a gauge transformation, which is quite well
for identification of white (singlet) states
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Table 1. Map between non-commutative and ordinary gauge
theories

Non-Abelian Electrodynamics
gauge theory ⇔ on matrix space

Aµ(x) = Aµ
a(x)T a = Aµ(X) + (Λ(X) + δΛ(X))

Fµν(x) = Fµν
a (x)T a = Fµν(X)

Jµ(x) = Jµ
a (x)T a = DτX

µ

Λ(x) = Λa(x)T a = Λ(X)

Since in this case we have matrices on both sides, it may
be possible to find an isomorphism between all objects
involving in the two theories, i.e., dynamical variables and
transformation parameters.

It is useful to consider some points in this direction.
We may begin by the action

S =
∫

dd+1x

(
− ψ̄(γµ∂µ + m)ψ

− Tr
(

1
4g2FµνF

µν + JµA
µ

))
, (26)

Aµ(x) = Aµ
a(x)T a, Fµν(x) = Fµν

a (x)T a,

µ, ν = t, i,

in which the term JµA
µ is responsible for the interaction,

and can be taken in the standard form Ja
µ = iψ̄γµT

aψ.
Gauge invariance specifies the behavior of the current Jµ

under the gauge transformations to be J(x) → J ′(x) =
U†J(x)U .

Now we can sketch the form of the map between the
two theories in Table 1.

Two points should be emphasized. First, in the above
we are sketching the relation or map between a field theory
and a world-line theory of a particle in a matrix space;
like the one that we assume for the relation between field
theories and theories living on the world-sheet of strings.
Second, though other gauges (like the light-cone one of
[12,11]) maybe have some more advantages, here we have
assumed that a covariant theory on matrix space is also
available; in the above it is needed to define the covariant
derivative Dτ along the world-line (see [6] as an example
of such a theory). In Table 1 we mention that, firstly, the
objects in both sides are matrices, and so the number of
degrees of freedom matches. Secondly, field strengths and
currents of the two theories transform identically, i.e., in
the adjoint representation.

The fate of the map after quantization is interesting.
It remains to be understood which correlation functions
of the two theories should be put “equal”. We leave this
for the future.

As a last point, it will be interesting to mention the
conceptual relation between the above map, and the ideas
concerned in special relativity. Let us take the following
general prescription in our physical theories: the structure
of space-time has to be in correspondence with the fields:
fields ⇔ coordinates. In this way one understands that
the space-time coordinates xµ as well as gauge potentials
Aµ behave like a (d + 1)-vector (spin 1) under the boost

Table 2. Analogy of fields and coordinates as treated in the
text

Field Space-time coordinates Theory

Photon Aµ xµ Electrodynamics
Fermion ψ θ, θ̄ Supersymmetric
Gluon Aµ

a Xµ
a Chromodynamics?

transformations. This is just the same idea as in special
relativity: to change the picture of space-time so as to be
consistent with the Maxwell equations.

Also in this way supersymmetry is a natural contin-
uation of the special relativity program: Adding the spin
1/2 sector to the coordinates of space-time, as the rep-
resentative of the fermions of nature. This leads one to
the super-space formulation of the supersymmetric theo-
ries, and in the same way fermions are introduced into the
bosonic string theory.

Now, what modifications may be thought of if nature
has non-Abelian (non-commutative) gauge fields? In the
present view of nature non-Abelian gauge fields cannot
form spatially long coherent states; they are confined or
too heavy. But the picture may be changed inside those re-
gions of space-time where such fields are non-zero. In fact
recent developments in string theory sound this change
and it is understood that non-commutative coordinates
and non-Abelian gauge fields are two sides of the same
coin. We may summarize the above discussion in Table 2
[12,11].

6 Finite-N non-commutative phenomenology

Recently non-commutative field theories have attracted a
great deal of interest. Most of these kinds of studies con-
cern theories which are defined on spaces whose coordi-
nates satisfy the algebra [x̂µ, x̂ν ] = iθµν . This algebra is
satisfied just by ∞ × ∞ matrices, and as a consequence,
the concerned non-commutativities should be assumed in
all regions of the space. Also, generally in these spaces one
should expect violation of Lorentz invariance.

In the case we have for D0-branes, the non-commuta-
tivity of matrix coordinates is “confined” inside the bound
state, and so it appears to be different, and maybe more
interesting. How can we probe this non-commutativity?
The answer is gained simply through “the response of non-
commutativity to the external probes.” The dynamics of
D0-branes in a background of curved metric Gµν(x, t) and
the 1-form (RR) field Aµ(x, t) can be given to lowest or-
ders by (we are not being very precise about indices and
coefficients) [4,5]

S =
∫

dtTr

(
m

2
Gij(X, t)DtX

iDtX
j

+ qGij(X, t)Ai(X, t)DtX
j − qAt(X, t) (27)

+ mG(X, t)G(X, t)
[X,X]2

l4
+ (1 − G00(X, t)) + · · ·

)
.
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Fig. 1. Long wavelength scattering: sub-structure is not seen

Fig. 2. Short wavelength scattering: non-commutativity is
probed

We again mention that the backgrounds Gµν(x, t) and
Aµ(x, t) appear in the action by a functional dependence
on the matrix coordinates X. In fact this is the key of
the answer to the question “How to probe non-commuta-
tivity?” In a Fourier expansion of the background we find

A(X, t) =
∑

k

Ā(k, t)eikiX
i

,

G(X, t) =
∑

k

Ḡ(k, t)eikiX
i

, (28)

in which Ā(k, t) and Ḡ(k, t) are the Fourier components
of the fields A(x, t) and G(x, t) respectively; i.e., fields
by ordinary coordinates. One can imagine the scattering
processes which are designed to probe inside the bound
states. As in every other scattering process we have two
regimes:

(1) long wavelength,
(2) short wavelength.

In the small k (long wavelength) regime, the fields Aµ

and Gµν do not involve X matrices mainly, and the fields
will appear to be nearly constant inside the bound state.
So in this regime non-commutativity will not be seen; see
Fig. 1.

In the large k (short wavelength) regime, the fields
depend on the coordinates X, and so the sub-structure
responsible for non-commutativity should be probed; see
Fig. 2. As we recalled previously, in fact it is understood
that the non-commutativity of D0-brane coordinates is a
consequence of the strings which are stretched between
D0-branes. So, by these kinds of scattering processes one
should be able to probe both D0-branes (as point-like ob-
jects), and the strings stretched between them.
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